Laser Ablation-Assisted Micro-Pattern Screen-Printed Transducing Electrodes for Sensing Applications

0
  • Lim, WH, Yap, YK, Chong, WY, and Ahmad, H. All-optical graphene oxide humidity sensors. Sensors 1424329–24337 (2014).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Ghadiry, M. et al. Nano-anatase tio2 for high performance on-chip optical humidity sensing. Sensors 1639 (2016).

    ADS

    Google Scholar

  • Jang, M., Yoon, C., Park, J. & Kwon, O. Hazardous Chemicals Assessment with Material Safety Data Sheet and By-Products of a Photoresist Used in the Semiconductor Manufacturing Industry . Saf. health work ten114-121 (2019).

    PubMed

    Google Scholar

  • Lin, AY-C., Panchangam, SC & Lo, C.-C. The impact of semiconductor, electronics and optoelectronics industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Approximately. Pollution. 1571365–1372 (2009).

    CASE
    PubMed

    Google Scholar

  • Wang, Y., Zhang, Z., Jiang, C. & Xu, T. Electrodialysis process for recycling and concentration of tetramethylammonium hydroxide (tmah) from photoresist developer waste water. Eng. ind. Chem. Res. 5218356–18361 (2013).

    CASE

    Google Scholar

  • Cruz, SM F., Rocha, LA & Viana, JC Printing technologies on flexible substrates for printed electronics. In Flexible electronics (IntechOpen, 2018).

  • Khirotdin, RK, Hassan, N., Siang, HH & Zawahid, MH Printing and curing a conductive ink track on a curvature substrate using a fluid delivery system and an oven. Eng. Lett. 253 (2017).

    Google Scholar

  • Hrehorova, E. et al. Etching printing of conductive inks on glass substrates for printed electronics applications. J. Display Technology. 7318–324 (2011).

    ADS

    Google Scholar

  • Ravasio, CS, Hoath, SD, Martin, GD, Boltryk, P. & Dorrestijn, M. Movement of the meniscus inside a dod inkjet printhead nozzle. In NIP Conference and Digital Manufacturing, flight. 2016, 348–352 (Society for Imaging Science and Technology, 2016).

  • Magdasi, S. The chemistry of inkjet inks (Scientific World, Singapore, 2009).

    Google Scholar

  • Ishihara, T. & Matsubara, S. Capacitive type gas sensors. J. Electroceram. 2215–228 (1998).

    CASE

    Google Scholar

  • Endres, H.-E., Hartinger, R., Schwaiger, M., Gmelch, G. & Roth, M. A capacitive co2 sensor system with humidity interference suppression. Sense. Actuators B Chem. 5783–87 (1999).

    CASE

    Google Scholar

  • Lee, S. & Chang, M. Indoor air quality surveys in five classrooms. Indoor air 9134-138 (1999).

    CASE
    PubMed

    Google Scholar

  • Ivanov, B., Zhelondz, O., Borodulkin, L. & Ruser, H. Distributed smart sensor system for indoor climate monitoring 10–11 (in KONNEX Scientific Conf., Mnchen, 2002).

    Google Scholar

  • Bender, F., Länge, K., Voigt, A. & Rapp, M. Improving response characteristics of gases and surface acoustic wave biosensors using a capacitive coupling technique. Anal. Chem. 763837–3840 (2004).

    CASE
    PubMed

    Google Scholar

  • Kim, J.-Y., Chu, C.-H. & Shin, S.-M. Issaq: An integrated sensing system for real-time monitoring of indoor air quality. IEEE Sense. J. 144230–4244 (2014).

    ADS
    CASE

    Google Scholar

  • Liu, Y., Cui, T. & Varahramyan, K. All-polymer capacitor made with the inkjet printing technique. Solid state electron. 471543-1548 (2003).

    ADS
    CASE

    Google Scholar

  • Tetelin, A., Pellet, C., Laville, C. & N’Kaoua, G. Rapid response humidity sensors for a medical microsystem. Sense. Actuators, B Chem. 91211-218 (2003).

    CASE

    Google Scholar

  • Varghèse, O. et al. Gas sensing characteristics of multi-walled carbon nanotubes. Sense. Actuators, B Chem. 8132–41 (2001).

    CASE

    Google Scholar

  • Van Gerwen, P. et al. Nanoscale interdigital electrode arrays for biochemical sensors. Sense. Actuators, B Chem. 4973–80 (1998).

    Google Scholar

  • Kitsara, M. et al. Single-chip interdigital electrode capacitive chemical sensor arrays. Sense. Actuators, B Chem. 127186-192 (2007).

    CASE

    Google Scholar

  • Endres, H.-E. & Drost, S. Optimization of the geometry of gas-sensitive interdigital capacitors. Sense. Actuators, B Chem. 495–98 (1991).

    CASE

    Google Scholar

  • Hu, X. & Yang, W. Planar Capacitive Sensor Designs and Applications. Sense. Rev. 3024–39 (2010).

    CASE

    Google Scholar

  • Oprea, A. et al. Temperature, humidity and gas sensors integrated on a plastic sheet for low power applications. Sense. Actuators, B Chem. 140227–232 (2009).

    CASE

    Google Scholar

  • Courbat, J., Kim, Y., Briand, D. & De Rooij, N. Inkjet printing on paper for the production of humidity and temperature sensors. In 2011 16th International Conference on Semiconductor Sensors, Actuators and Microsystems1356–1359 (IEEE, 2011).

  • Quintero, AV, Molina-Lopez, F., Mattana, G., Briand, D. & De Rooij, N. Self-contained printed humidity sensor with thermo-calibration and integrated heater. In 2013 Transducers & Eurosensors XXVII: 17th International Conference on Semiconductor Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII)838–841 (IEEE, 2013).

  • Rivadeneyra, A. et al. Design and characterization of a low thermal drift capacitive humidity sensor by inkjet printing. Sense. Actuators, B Chem. 195123-131 (2014).

    CASE

    Google Scholar

  • Molina-Lopez, F., Briand, D. & De Rooij, N. All humidity sensors printed by additive inkjet on a plastic substrate. Sense. Actuators, B Chem. 166212-222 (2012).

    Google Scholar

  • Sohrabi, C. et al. Impact of the Coronavirus (COVID-19) Pandemic on Scientific Research and Implications for Clinical Academic Education – A Review. Int. J. Surg. 1(86), 57–63 (2021).

    Google Scholar

  • Snyder, GJ, Lim, JR, Huang, C.-K. & Fleurial, J.-P. Thermoelectric microdevice fabricated by a mems-type electrochemical process. Nat. Mater. 2528-531 (2003).

    ADS
    CASE
    PubMed

    Google Scholar

  • Li, L., Vilela, F., Forgie, J., Skabara, PJ & Uttamchandani, D. Miniature humidity micro-sensor based on polymer-organic conductive polymer (3,4-ethylenedioxythiophene). Micro Nano Lett. 484–87 (2009).

    CASE

    Google Scholar

  • Juhász, L. & Mizsei, J. Thin-film porous alumina humidity sensor structures for on-chip integration. Thin solid films 5176198–6201 (2009).

  • Murata, K. Superfine inkjet printing for nanotechnology. In Proceedings International Conference on MEMS, NANOs and Intelligent Systems346–349 (IEEE, 2003).

  • Moya, A., Gabriel, G., Villa, R. & del Campo, FJ Electrochemical inkjet printed sensors. Current opinion in electrochemistry (2017).

  • Anderson, H. et al. Inkjet printed silver nanoparticle humidity sensor with memory effect on paper. IEEE Sense. J. 121901-1905 (2011).

    ADS

    Google Scholar

  • Baria, M. et al. Electrochemical sensors printed by roll-to-roll engraving for portable and medical devices. ACS Nano 126978–6987 (2018).

    CASE
    PubMed

    Google Scholar

  • Jeong, H., Noh, Y. & Lee, D. Highly stable and sensitive resistive flexible humidity sensors using roll-to-roll printed electrodes and flower-shaped tio2 nanostructures. Ceram. Int. 45985–992 (2019).

    CASE

    Google Scholar

  • Reddie, A. et al. Etching printed electrochemical biosensor. proc. Eng. 25956–959 (2011).

    CASE

    Google Scholar

  • Khan, S., Ul-Islam, M., Ullah, MW, Kim, Y. & Park, JK Synthesis and characterization of a novel bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) composite in use in biomedical applications. Cellulose 222141-2148 (2015).

    CASE

    Google Scholar

  • Lee, S., Hong, Y. & Shim, BS Biodegradable Pedot: Pss/Clay Composites for Multifunctional Green Electronic Materials. Adv. Sustain. System 62100056 (2021).

    Google Scholar

  • Kumar, RP & Abraham, A. Pvp-coated naringenin nanoparticles for biomedical applications – in vivo toxicological evaluations. Chem. Biol. Interact. 257110-118 (2016).

    CASE
    PubMed

    Google Scholar

  • Haider, A. & Kang, I.-K. Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv. Mater. Science. Eng.https://doi.org/10.1155/2015/165257 (2015).

    Google Scholar

  • Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B. & Roullet, J.-B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrobial. Chimimer. 61869–876 (2008).

    CASE
    PubMed

    Google Scholar

  • Gupta, A., Matsui, K., Lo, J.-F. & Silver, S. Molecular basis of silver cation resistance in salmonella. Nat. Med. 5183-188 (1999).

    CASE
    PubMed

    Google Scholar

  • Morones, JR et al. The bactericidal effect of silver nanoparticles. Nanotechnology 162346 (2005).

    ADS
    CASE
    PubMed

    Google Scholar

  • Inglesby, M. & Zeronian, S. Direct dyes as molecular sensors to characterize cellulosic substrates. Cellulose 919–29 (2002).

    CASE

    Google Scholar

  • Han, J.-W., Kim, B., Li, J. & Meyyappan, M. Humidity sensor based on carbon nanotubes on cellulose paper. J.Phys. Chem. VS 11622094–22097 (2012).

    CASE

    Google Scholar

  • Yin, Z., Huang, Y., Duan, Y. & Zhang, H. Electrohydrodynamic direct writing for flexible electronics manufacturing (Springer, 2018).

  • Alcantara, G. & Andrade, C. A brief review of gas sensors based on an interdigital electrode. In 2015 12th IEEE International Conference on Electronic Measurements and Instruments (ICEMI), flight. 3, 1616-1621 (IEEE, 2015).

  • Share.

    Comments are closed.